Skip to content
Back Home
Simons Collaboration on Global Categorical Symmetries
  • Home
  • People
  • Events
  • Positions
  • Resources
  • Publications
  • Chrysalis
  • Search
Back Home
Simons Collaboration on Global Categorical Symmetries
  • Search
  • Home
  • People
  • Events
  • Positions
  • Resources
  • Publications
  • Chrysalis
Home » Global-Categorical-Symmetries-Confinement » Publications » Zesting produces modular isotopes and explains their topological invariants
Publications

Zesting produces modular isotopes and explains their topological invariants

by juliaplavnik|Published September 2, 2021

Delaney, Kim, Plavnik. https://arxiv.org/abs/2107.11374

You may also like

Symmetry TFTs from String Theory
Published January 10, 2022

Symmetry TFTs from String Theory

Apruzzi, Bonetti, García Etxebarria, Hosseini, Schäfer-Nameki, https://arxiv.org/abs/2112.02092

Modular tensor categories, subcategories, and Galois orbits
Published June 19, 2022

Modular tensor categories, subcategories, and Galois orbits

 Plavnik, Schopieray, Yu, Zhang, https://arxiv.org/abs/2111.05228

On the 6d Origin of Non-invertible Symmetries in 4d
Published October 31, 2022

On the 6d Origin of Non-invertible Symmetries in 4d

Bashmakov, Del Zotto, Hasan, https://arxiv.org/abs/2206.07073

Kramers-Wannier-like duality defects in (3 + 1)d gauge theories
Published November 22, 2021

Kramers-Wannier-like duality defects in (3 + 1)d gauge theories

Kaidi, Ohmori, Zheng, https://arxiv.org/abs/2111.01141

Post navigation

  • Previous post Claudia Scheimbauer on “Dualizabitility, higher categories, and topological field theories”
  • Back to post list
  • Next post We Are Hiring!

© 2025 Simons Collaboration on Global Categorical Symmetries – All rights reserved

Powered by WP – Designed with the Customizr theme